Abstract
Sharp dies are often used commercially to produce polymeric fibers in the melt-blowing process. In these sharp dies, the flow field results from two similar converging plane jet nozzles with no space between the nozzles. This study utilizes a computational fluid dynamics approach that is validated through experimental data to investigate the effect of recess or excess (inset or outset) of the die nose on the flow field. The Reynolds Stress Model is used to simulate the turbulence, and the model parameters are calibrated with experimental data. The flow field downstream from the sharp die is found to exhibit (a) a merging region, which includes a maximum in turbulence intensity, and (b) a self-similar region. The behavior of alternative die designs is correlated to the die configuration. The more that the nose piece is recessed, the larger is the mean velocity under the die, but at the same time the turbulence becomes stronger.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.