Abstract

The effects of diazepam, which acts at GABAA receptors to enhance the effects of GABA, and ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist, on local rates of cerebral glucose utilization (ICMRglc) were examined in unrestrained rats. Four groups were studied: vehicle-injected controls; and ketamine-treated, diazepam-treated and combined ketamine- and diazepam-treated animals. Ketamine alone produced a heterogeneous pattern of changes in ICMRglc (e.g. significant increases in the corpus callosum, olfactory tubercle and the entire Papez circuit, in addition to other limbic areas, and significant decreases in lateral habenula and some components of the auditory system). Diazepam alone statistically significantly decreased ICMRglc in the brain as a whole and in most areas of the cerebral cortex, thalamus and limbic system. The most remarkable effects of the two drugs administered together on ICMRglc occurred in the limbic system where the dramatic increases observed with ketamine alone were prevented by treatment with diazepam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.