Abstract

The flammability, thermal stability and mechanical properties of natural fiber-reinforced thermoplastic bio-composites were measured using a horizontal burning test, thermogravimetric analyzer, and universal testing machine, respectively. The composites were fabricated from film resins (Polylactic-acid, PLA and Polypropylene, PP) and natural fibers (coconut filter and jute fiber) by a hot press machine. To improve the flame retardancy of the bio-composites, various diammonium phosphates (DAP) were treated into the fibers. In general, the results indicate that increasing the percentage of DAP used to treat the fibers effectively improves the flame resistant, weight loss rate, and flexural modulus but decreases the flexural and tensile strengths of the bio-composites. Bio-composites with DAP-treated fibers showed a greater flexural modulus than those with untreated fibers, and the flexural modulus was even greater than that of neat polymers (PLA and PP). Also, increasing the percentage of DAP for treatment of the fibers in the composites decreases the temperature required for 5% weight loss and the decomposition rate, but increases the char residual at 500°C. The best linear burning rate and weight loss rate were observed for fiber treatment with 5% DAP. The compressive and wear properties of these bio-composites were also studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.