Abstract

Objective The present study was designed to determine whether dexmedetomidine (DEX) exerts cardioprotection against myocardial I/R injury in diabetic hearts and the mechanisms involved. Methods A total of 30 diabetic rats induced by high-glucose-fat diet and streptozotocin (STZ) were randomly assigned to five groups: diabetic sham-operated group (DM-S), diabetic I/R group (DM-I/R), diabetic DEX group (DM-D), diabetic DEX + Wort group (DM-DW), and diabetic Wort group (DM-W). Another 12 age-matched male normal SD rats were randomly divided into two groups: sham-operated group (S) and I/R group (I/R). All rats were subjected to 30 min myocardial ischemia followed by 120 min reperfusion except sham groups. Plasmas were collected to measure the malondialdehyde (MDA), creatine kinase isoenzymes (CK-MB), and lactate dehydrogenase (LDH) levels and superoxide dismutase (SOD) activity at the end of reperfusion. Pathologic changes in myocardial tissues were observed by H-E staining. The total and phosphorylated form of Akt and GSK-3β protein expressions were measured by western blot. The ratio of Bcl-2/Bax at mRNA level was detected by reverse transcription-polymerase chain reaction (RT-PCR). Results DEX significantly reduced plasma CK-MB, MDA concentration, and LDH level and increased SOD activity caused by I/R. The phosphorylation of Akt and GSK-3β was increased, Bcl-2 mRNA and the Bcl-2/Bax ratio was increased, and Bax mRNA was decreased in the DEX group as compared to the I/R group, while posttreatment with Wort attenuated the effects induced by DEX. Conclusion The results of this study suggest that DEX postconditioning may increase the phosphorylation of GSK-3β by activating the PI3K/Akt signaling pathway and may inhibit apoptosis and oxidative stress of the myocardium, thus exerting protective effects in diabetic rat hearts suffering from I/R injury.

Highlights

  • The incidence of type-2 diabetes mellitus (T2DM) is on the increase worldwide which seriously threatens the health of the patients

  • fasting blood glucose (FBG), plasma TG, and total cholesterol (TC) of diabetic rats were increased compared to normal rats; heart weight in these rats was decreased in the 4th week after STZ

  • Plasma CK-MB and lactate dehydrogenase (LDH) levels in the DM-DW group were increased compared to the DM-D group, suggesting that cardioprotection of DEX were suppressed by Wort

Read more

Summary

Objective

The present study was designed to determine whether dexmedetomidine (DEX) exerts cardioprotection against myocardial I/R injury in diabetic hearts and the mechanisms involved. A total of 30 diabetic rats induced by highglucose-fat diet and streptozotocin (STZ) were randomly assigned to five groups: diabetic sham-operated group (DM-S), diabetic I/R group (DM-I/R), diabetic DEX group (DM-D), diabetic DEX + Wort group (DM-DW), and diabetic Wort group (DM-W). Another 12 age-matched male normal SD rats were randomly divided into two groups: sham-operated group (S) and I/R group (I/R). The results of this study suggest that DEX postconditioning may increase the phosphorylation of GSK-3β by activating the PI3K/Akt signaling pathway and may inhibit apoptosis and oxidative stress of the myocardium, exerting protective effects in diabetic rat hearts suffering from I/R injury

Introduction
Materials and Methods
Results
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call