Abstract

PurposeTo investigate the mechanisms through which dexmedetomidine (DEX) could improve the renal injury in lipopolysaccharide (LPS)-induced acute kidney injury (AKI) and examine how TNF-α or DEX might affect mitochondrial function and renal injury. MethodsIn vivo experiments involved 24 rats randomly allocated to a sham group, an LPS group, and an LPS + DEX group. Serum creatinine, lactate, TNF-α, IL-1β, and IL-6 concentrations, as well as urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, were measured 0, 3, and 6 h after the start of the experiments. Histopathological examinations were performed to determine the extent of LPS-induced renal injury and recovery by administration of DEX. in vitro, human embryonic kidney 293 cells were treated with or without (control) several concentrations of TNF-α and DEX for 24 h before measurements of the oxygen consumption rate (OCR) under basal conditions and with the addition of oligomycin, carbonylcyanide-p-trifluoromethoxyphenylhydrazone, antimycin A, and rotenone, as well as intracellular reactive oxygen species (ROS) levels. ResultsDEX attenuated LPS-induced increases in serum creatinine and IL-6 concentrations. LPS administration caused histological tissue damage in the kidney, but DEX prevented such damage. In vitro, DEX suppressed TNF-α-induced increases in basal OCR and ROS levels and inhibited decreases of ATP production induced by TNF-α. ConclusionDEX has protective effects for cells and tissues of the kidney by inhibiting oxygen consumption and hypoxia or by improving mitochondrial dysfunction via TNF-α in the renal cells. These results might point to DEX being an important new therapeutic target for the treatment of septic AKI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call