Abstract

BackgroundLyme neuroborreliosis (LNB), caused by the spirochete Borrelia burgdorferi (Bb), affects both the central and peripheral nervous systems. Previously, we reported that in a model of acute LNB in rhesus monkeys, treatment with the anti-inflammatory drug dexamethasone significantly reduced both pleocytosis and levels of cerebrospinal fluid (CSF) immune mediators that were induced by Bb. Dexamethasone also inhibited the formation of inflammatory, neurodegenerative, and demyelinating lesions in the brain and spinal cord of these animals. In contrast, these signs were evident in the infected animals that were left untreated or in those that were treated with meloxicam, a non-steroidal anti-inflammatory drug.MethodsTo address the differential anti-inflammatory effects of dexamethasone and meloxicam in the central nervous system (CNS), we evaluated the potential of these drugs to alter the levels of Bb-induced inflammatory mediators in culture supernatants of rhesus frontal cortex (FC) explants, primary rhesus astrocytes and microglia, and human oligodendrocytes. We also ascertained the potential of dexamethasone to modulate Bb-induced apoptosis in rhesus FC explants. As meloxicam is a known COX-2 inhibitor, we evaluated whether meloxicam altered the levels of COX-2 as induced by live Bb in cell lysates of primary rhesus astrocytes and microglia.ResultsDexamethasone but not meloxicam significantly reduced the levels of several Bb-induced immune mediators in culture supernatants of FC explants, astrocytes, microglia, and oligodendrocytes. Dexamethasone also had a protective effect on Bb-induced neuronal and oligodendrocyte apoptosis in rhesus FC explants. Further, meloxicam significantly reduced the levels of Bb-induced COX-2 in microglia, while both Bb and meloxicam were unable to alter the constitutive levels of COX-2 in astrocytes.ConclusionsThese data indicate that dexamethasone and meloxicam have differential anti-inflammatory effects on Bb-induced inflammation in glial and neuronal cells of the CNS and help explain the in vivo findings of significantly reduced inflammatory mediators in the CSF and lack of inflammatory neurodegenerative lesions in the brain and spinal cord of Bb-infected animals that were treated with dexamethasone but not meloxicam. Signaling cascades altered by dexamethasone could serve as possible therapeutic targets for limiting CNS inflammation and tissue damage in LNB.

Highlights

  • Lyme neuroborreliosis (LNB), caused by the spirochete Borrelia burgdorferi (Bb), affects both the central and peripheral nervous systems

  • We recently explored if inflammation had a causal role in mediating the pathogenesis of LNB by evaluating the inflammatory changes in rhesus macaques infected with Bb that were left untreated or were given either the anti-inflammatory drug dexamethasone, a steroid that inhibits the expression of several immune mediators [9], or meloxicam, a non-steroidal anti-inflammatory drug that inhibits cyclooxygenase-2 (COX-2) [10]

  • The pattern of mediator response found in the Dexamethasone protects frontal cortex (FC) neurons and oligodendrocytes from Bb-induced apoptosis Live Bb induced enhanced levels of apoptosis, as measured by the transferase dUTP nick end labeling (TUNEL) assay, in both neurons and oligodendrocytes as compared to medium alone

Read more

Summary

Introduction

Lyme neuroborreliosis (LNB), caused by the spirochete Borrelia burgdorferi (Bb), affects both the central and peripheral nervous systems. We reported that in a model of acute LNB in rhesus monkeys, treatment with the anti-inflammatory drug dexamethasone significantly reduced both pleocytosis and levels of cerebrospinal fluid (CSF) immune mediators that were induced by Bb. Dexamethasone inhibited the formation of inflammatory, neurodegenerative, and demyelinating lesions in the brain and spinal cord of these animals. Lymphocyte and plasma cell infiltration in the leptomeninges and perivascular infiltrates of immune cells adjacent to white matter lesions in the brain and transverse myelitis lesions in the spinal cord have been documented in pathological examinations of lesions from cases of human LNB [2, 7, 8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call