Abstract

AbstractThe effect of rate of dehydration was assessed for embryonic axes from mature seeds of Camellia sinensis and the desiccation sensitivity of axes of different developmental stages was estimated using electrolyte leakage. Rapidly (flash) dried excised axes suffered desiccation damage at lower water contents (0.4 g H2O (g DW)−1) than axes dried more slowly in the whole seed (0.9 g H2O (g DW)−1). It is possible that flash drying of isolated axes imposes a stasis on deteriorative reactions that does not occur during slower dehydration. Differential scanning calorimetry (DSC) of the axes indicated that the enthalpy of the melting and the amount of non-freezable water were similar, irrespective of the drying rate.Very immature axes that had completed morphogenesis and histodifferentiation only were more sensitive to desiccation (damage at 0.7 g H2O (g DW)−1) than mature axes or axes that were in the growth and reserve accumulation phase (damage at 0.4 g H2O (g DW)−1). As axes developed from maturity to germination, their threshold desiccation sensitivity increased to a higher level (1.3−1.4 g H2O (g DW)−1). For the very immature axes, enthalpy of the melting of tissue water was much lower, and the level of non-freezable water considerably higher, than for any other developmental stage studied.There were no marked correlations between desiccation sensitivity and thermal properties of water. Desiccation sensitivity appears to be related more to the degree of metabolic activity evidenced by ultrastructural characteristics than to the physical properties of water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.