Abstract

The properties of 4-hydroxybenzoate:polyprenyl transferase and the system synthesizing polyprenyl pyrophosphate have been studied in mitochondria from rat and guinea pig livers. With solanesyl pyrophosphate and 4-hydroxybenzoate as substrates the formation of 3-nonaprenyl-4-hydroxybenzoate was linear with time, concentration of protein, and concentration of solanesyl pyrophosphate. Solanesyl monophosphate is inactive as a substrate and is noninhibitory. Conversion of solanesyl monophosphate to the pyrophosphate could not be detected. Detergents such as Triton X-100, Tween-80, and sodium deoxycholate activated the enzyme in mitochondria which were aged by freezing at -20 degrees C for periods ranging from 1 h to several days. Maximum activation also required Mg2+. In agreement with previous observation the effect of Mg2+ and Triton X-100 on fresh mitochondria was quite variable; however, activation with aged preparations was very consistent. Treatment with TritonX-100 causes al alteration in the biosynthetic pattern of rat liver mitochondria so that rather than nonaprenyl, decaprenyl, pyrophosphate is preferentially made in the presence of solanesyl pyrophosphate and isopentenyl pyrophosphate. In the presence of Triton X-100 and added pool of solanesyl pyrophosphate appears to exert a feedback inhibition on the incorporation of isopentenyl pyrophosphate into solanesyl pyrophosphate. In the case of guinea pig liver mitochondria a different pattern is observed with Triton X-100 in contrast to the rat. The de novo formation of decaprenyl pyrophosphate from isopentenyl pyrophosphate appears to be inhibited by Triton X-100, but the synthesis of decaprenyl pyrophosphate from isopentenyl pyrophosphate and nonaprenyl pyrophosphate is not inhibited. The data also indicate that in guinea pig liver in a system synthesizing decaprenyl pyrophosphate from isopentenyl pyrophosphate, there does not appear to be a detectable pool of nonaprenyl pyrophosphate. These results show that detergents can affect the specificity of the mitochondrial system synthesizing polyprenyl pyrophosphates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call