Abstract
This study proposes a method for calculating the fatigue–creep of a supercritical carbon dioxide (sCO2) solar receiver based on the linear damage accumulation (LDA) theory. The effects of temperature and stress on creep and fatigue were considered through the Manson–Coffin formula and Mendelson–Roberts–Manson (M–R–M) correlation, and the interaction between creep and fatigue was reflected by adopting the damage allowable region (DAR). Based on the DAR, a comprehensive damage coefficient K was proposed to assess the damage and safety margin of the receiver. Furthermore, this study used this method to analyze the impact of critical design parameters, namely the flow rate, tube wall thickness, and tube radius on the fatigue–creep damage of a single tube of an sCO2 solar receiver. The results demonstrated that increasing the design flow rate or decreasing the tube radius could reduce the fatigue–creep damage of the receiver, and the effect of wall thickness on creep was related to the heat flux at the location of the receiver. For the same design parameters, the creep damage was evidently greater than the fatigue damage and thus, the influence of creep on the receiver should be given priority in the design process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.