Abstract

Groundwater iodine has direct importance for human dietary iodine intake in areas where drinking water is of groundwater origin. However, little is known about enrichment and mobilization mechanisms of groundwater iodine in the North China Plain (NCP). Geochemistry, inorganic/organic carbon isotope and biomarker of groundwater and sediment samples were studied to reveal the effects of depositional environment and organic matter (OM) degradation on the generation of high iodine groundwater (>100 μg/L) in NCP. Results showed that groundwater iodine had a range of 7.2–800 μg/L and was increasing with increase in HCO3 concentration and decrease in groundwater δ13CDIC value, indicating the potential effects of microbial activity on the elevation of groundwater iodine. Sediments iodine ranged from 0.03 to 2.54 μg/g and higher contents occurred under the oxidizing depositional environment (higher Pr/Ph ratios). Biomarker analysis indicated that the marine iodine-rich OM is considered as the main source of groundwater iodine, which is prone to be released into groundwater by the microbial degradation under the reducing conditions. The hypothesis was evidenced by the 13Corg, 13CDIC and 3-D excitation emission matrices of groundwater. These results suggest that carbon-related biogeochemical cycling and redox condition are important in the enrichment and mobilization of iodine in groundwater system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.