Abstract

TiO 2 single layers and TiO 2/SiO 2 high reflectors (HR) are prepared by electron beam evaporation at different TiO 2 deposition rates. It is found that the changes of properties of TiO 2 films with the increase of rate, such as the increase of refractive index and extinction coefficient and the decrease of physical thickness, lead to the spectrum shift and reflectivity bandwidth broadening of HR together with the increase of absorption and decrease of laser-induced damage threshold. The damages are found of different morphologies: a shallow pit to a seriously delaminated and deep crater, and the different amorphous-to-anatase-to-rutile phase transition processes detected by Raman study. The frequency shift of Raman vibration mode correlates with the strain in film. Energy dispersive X-ray analysis reveals that impurities and non-stoichiometric defects are two absorption initiations resulting to the laser-induced transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call