Abstract

ABSTRACTGlancing-angle deposition (GLAD) is a fabrication method capable of producing thin films with variable porosity. The GLAD process exploits substrate shadowing and limited adatom diffusion to create isolated columns of material that collectively comprise a highly porous thin film. GLAD can be used to create chiral or helical structures with a wide range of porosity through variation of the substrate tilt angle and controlled substrate rotation. We present the effect of the deposition angle on the selective transmittance of circularly polarized light in helical thin films fabricated with the GLAD process. Transmission measurements of titanium dioxide helical films reveal two regimes of enhanced selective transmittance: one corresponding to a substrate tilt angle that produces a maximum circular birefringence and another corresponding to strong anisotropic scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call