Abstract
Decreasing the K+ concentration of the medium from 5 mM to 0.59 mM decreased the K+ content of chick embryo fibroblasts to 22% of control values and increased the Na+ content to 820% of control values. The alteration of monovalent cation content occurred within two hours but had no effect on the rate of DNA synthesis, as measured by 3H-thymidine incorporation, for at least 16 hours. By decreasing the Na+ concentration in the medium, a 50% reduction in cellular Na+ could be obtained with no effect on thymidine incorporation. Since these changes in cellular Na+ or K+ are much larger than any known to occur under physiological conditions but have no effect on thymidine incorporation, we conclude that Na+ and K+ do not play a critical role in determining multiplication rate. Addition of 1.8 mEGTA to cells in media containing 1.7 mM Ca2+ and 0.8 mM Mg2+ inhibited thymidine incorporation and sharply decreased cellular K+ and increased cellular Na+ content. However, there was no reduction in total cellular Ca2+ levels. Likewise, decreasing the Ca2+ concentration of the medium below 0.01 mM inhibited thymidine incorporation, decreased cellular K+ and Mg2+, and increased cellular Na+ but did not affect total cellular Ca2+ levels. Inhibition of DNA synthesis, therefore, could not be correlated with changes in cellular Ca2+ levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.