Abstract

Stem cells are used to treat numerous diseases; however, their lifespan is rather short. Factors such as probiotics affect and improve various cell lineage efficacies. The aim of this study was to investigate the effects of probiotics-conditioned media on dental pulp stem cell potentials in osteogenesis. The experiment was initiated by culturing Lactobacillus casei and Lactobacillus acidophilus probiotics as well as DPS-7 cells. Bacterial supernatants were separated and concentrated as the conditioned media. The DPS-7 cells were treated with various concentrations of the conditioned media. Furthermore, MTT assay and alkaline phosphatase activity were used. The mRNA expression of three genes (bFGF, EGF-β and BMP-2) involved in osteogenesis was analyzed using a real-time polymerase chain reaction. The response of dental pulp stem cells to probiotics preconditioning promoted cell proliferation, increased alkaline phosphatase activity and upregulated bFGF and BMP-2 gene expression. Increased expression was significant for BMP-2 and moderate for bFGF; however, it was non-significant for EGF-β. The use of the two probiotics was the most effective. In general, synergism of the combined probiotics preconditioning induces differentiation of DPS-7 cells into osteoblasts most effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call