Abstract

Fatigue crack growth tests and crack closure measurements were performed for A356 cast aluminium alloys reinforced by 10 or 20% SiC particles and their matrix A356 alloys with systematically controlled dendrite cell size and particle distribution. The cell size dependence of the fatigue crack growth behaviour in the composite was found to be quite similar to that of the matrix alloy. This suggests that the cell size rather than the particle-crack tip interaction is the most important factor to control the fatigue crack growth of the composites. Near threshold fatigue crack growth properties were improved in the composites with coarser cell size and inhomogeneous particle distribution due to the enhanced roughness induced crack closure effect. These results were compared to those of powder-metallurgically-processed materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.