Abstract

Delipidation of beef heart electron transport particles with phospholipase A2 has been examined. When the particles were treated with the lipase and subjected to a low bovine serum albumin wash, ATPase activity was unaffected as was the lipid/protein ratio of the particles. However, energisation by ATP/Mg2+ was abolished. Furthermore, unsaturated but not saturated fatty acids discharged the steady-state ATP-driven membrane potential of control samples. When the phospholipase A2 hydrolysis products were removed, inhibition of energy-linked reactions in the lipid-depleted particles was still observed and was interpreted in terms of non-specific leaks in the vesicle membranes, and 'specific' leaks through impaired H+-ATPase complexes. ATPase activity was less susceptible to delipidation than energisation but was, nevertheless, strongly inhibited at 50 percent lipid depletion. Spin label studies indicated a decrease in the fluidity of particle membranes accompanying delipidation. Moreover, the discontinuity seen in Arrhenius plots of ATPase activity was shifted from 17 degrees C (control) to 22 degrees C at 50 percent phospholipid depletion. The data are consistent with a release of unsaturated fatty acids by phospholipase A2 rendering the transport particles both leakier and the membranes less fluid than controls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.