Abstract

Previous studies have revealed that delayed internal fixation can stimulate fracture callus formation and decrease the rate of nonunion. However, the effect of delayed stabilization on stem cell differentiation is unknown. To address this, we created fractures in mouse tibiae and applied external fixation immediately, at 24, 48, 72, or 96 h after injury. Fracture healing was analyzed at 10 days by histological methods for callus, bone, and cartilage formation, and the mechanical properties of the calluses were assessed at 14 days postinjury by tension testing. The results demonstrate that delaying stabilization for 24-96 h does not significantly affect the volume of the callus tissue (TV) and the new bone (BV) that formed by 10 days, or the mechanical properties of the calluses at 14 days, compared to immediate stabilization. However, delaying stabilization for 24-96 h induces 10-40x more cartilage in the fracture calluses compared with fractures stabilized immediately. These findings suggest that delaying stabilization during the early phase of fracture healing may not significantly stimulate bone repair, but may alter the mode of bone repair by directing formation of more cartilage. Fractures that are not rigidly stabilized form a significantly larger amount of callus tissue and cartilage by 10 days postinjury than fractures stabilized at 24-96 h, indicating that mechanical instability influences chondrocytes beyond the first 96 h of fracture healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.