Abstract
In this paper, we consider the effects of time delay and space diffusion on the dynamics of a Leslie–Gower type predator–prey system. It is shown that under homogeneous Neumann boundary condition the occurrence of space diffusion does not affect the stability of the positive constant equilibrium of the system. However, we find that the incorporation of a discrete delay representing the gestation of prey species can not only destabilize the positive constant equilibrium of the system but can also cause a Hopf bifurcation at the positive constant equilibrium as it crosses some critical values. In particular, we prove that these Hopf bifurcations' periodic solutions are all spatially homogeneous if the diffusive rates are suitably large, which has the same properties as periodic solutions of the corresponding delayed system without diffusion. However, if the diffusive rates are suitably small, then the system will generate spatially nonhomogeneous periodic solutions. The results in this work demonstrate that diffusion plays an important role in deriving complex spatiotemporal dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.