Abstract

Considering failures during machinery processes such as drilling, a precautionary analysis involving delamination and the corresponding dissipated energy is required, especially for composite structures. In this context, because of the complexity of both the analysis procedure and experimental test setup, most studies prefer to represent mode I and III interlaminar crack propagation instead of that involving mode II. Therefore, in this study, the effect of mode II delamination and corresponding interlaminar crack propagation was considered during the drilling process of multilayered glass/polyester composites using both numerical and experimental approaches. In the experimental procedure, the mechanical properties of the glass/polyester specimens were obtained according to ASTM D3039. In addition, the interlaminar mixed-mode (I/II) loadings were determined using an ARCAN test fixture so that the fracture toughness of glass/polyester could then be identified. The mode II critical strain energy release rate (CSERR) was then obtained using an experimental test performed using an ARCAN fixture and the virtual crack closure technique (VCCT). It was determined that the numerical approach was in accordance with the experiments, and more than 95% of crack propagation could be attributed to mode II compared to the two other modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call