Abstract

This paper examines the effects of cyclic bending on the deformation and failure of layers that are relevant to flexible organic solar cells (with Polyethylene Terephthalate (PET) substrates and Poly-3-hexylthiophene: [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) active layers). The deformation and cracking mechanisms are elucidated along with the stresses and crack driving forces associated with the bending of flexible organic solar cells. The changes in the optical properties (transmittance) of the individual layers and multilayers are then explored for layers/multilayers deformed to flexural strains and stresses that are computed using finite element models. The implications of the results are then discussed for the design of flexible organic solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call