Abstract
AbstractHail affects yield and quality of maize crops, and consequences also depend on the growth stage at which the injury occurred. Whole‐plant maize (WPM) silage is often used within the same farm for cattle feeding and biogas production. The present study aimed to verify the effects of hail damage, simulated by artificial defoliation, on yield and chemical and nutritional features, as well as on biochemical methane potential (BMP) of maize forage. In a randomized block design with three replicates, four defoliation levels (0%, 33%, 66% and 100% of leaf area removal respectively) have been applied at either the V12 (12th leaf), R1 (silking) or R3 (milk) stages for two consecutive years. WPM yield, chemical and nutritional features, and BMP were measured. Dry‐matter (DM) yield per hectare was progressively reduced (p < 0.001) with increasing levels of defoliation and with application at V12 in comparison with R1 or R3 (1.26 vs. 1.39 and 1.46 kg ha−1 for V12 vs. R1 and R3; p < 0.003). Nutritive value and BMP per unit of product were less altered than dry‐matter yield per hectare by defoliation. Anticipating defoliation reduced net energy for lactation (5.26 vs. 5.46 MJ kg−1 DM for V12 and R3 respectively; p = 0.02). Total defoliation resulted in an accumulation of nitrates (NO3) compared to the other treatments (3.98 vs. 1.53 g NO3 kg−1 DM; p < 0.001). BMP was mainly reduced by early and complete defoliation. Equations were developed to estimate the effects of defoliation on yield, composition, and nutritive and energetic values of WPM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.