Abstract

Maintaining deep neuromuscular block during surgery improves surgical space conditions. However, its effects on patient outcomes have not been well documented. We examined whether maintaining deep neuromuscular blockade during surgery could decrease the stress response compared to moderate neuromuscular blockade. Patients undergoing laparoscopic gastrectomy were randomly allocated to either the moderate (train-of-four counts of 1–2) or deep (post-tetanic counts of 1–2) neuromuscular blockade group. The primary outcome variable was the postoperative blood level of interleukin-6, and the secondary outcome variables were intraoperative or postoperative blood levels of tumor necrosis factor-α, interleukin-1β, interleukin-8, and C-reactive protein. A total of 96 patients were recruited and 88 (44 in each group) were included in the analyses. The levels of tumor necrosis factor-α and interleukin-1β measured at the end of surgery, interleukin-6 and interleukin-8 measured at 2 h postoperatively, and C-reactive protein measured at 48 h postoperatively were all significantly increased compared to the preoperative values, but there were no differences between the moderate and deep neuromuscular block groups. We found no differences in surgical stress response measured using determining levels of interleukin-6 and other mediators released between the moderate and deep neuromuscular blockade groups in patients undergoing laparoscopic gastrectomy.

Highlights

  • The use of deep neuromuscular blockade (NMB) during surgery became practical with the introduction of sugammadex into clinical practice

  • The primary outcome variable was the level of interleukin (IL)-6 and the secondary outcome variables were the levels of tumor necrosis factor (TNF)-α, IL-1β, IL-8, and C-reactive protein (CRP)

  • The levels of TNF-α and IL-1β measured at the end of surgery, IL-6 and IL-8 measured at 2 h postoperatively, and CRP measured at 48 h postoperatively were all significantly increased compared to the respective preoperative values, but there were no differences between the groups (Fig. 2)

Read more

Summary

Introduction

The use of deep neuromuscular blockade (NMB) during surgery became practical with the introduction of sugammadex into clinical practice. Use of sugammadex allows rapid reversal of even deep NMB1. The use of deep NMB during surgery has improved the surgical space conditions[2]. Surgery and related tissue injury induce changes in hemodynamic, metabolic, and immune responses, which are largely regulated by endogenous mediators called cytokines or endogenous hormonal responses. Postoperative levels of cytokines and acute-phase reactants are related to the extent of tissue injury and the occurrence of complications[3]. We hypothesized that improving the surgical conditions by maintaining intraoperative deep NMB may reduce related tissue damage and thereby reduce intraoperative and postoperative inflammatory mediators and acute-phase reactant release. This study was performed to determine whether maintaining deep NMB during surgery would decrease the stress response compared to moderate NMB. The primary outcome variable was the level of interleukin (IL)-6 and the secondary outcome variables were the levels of tumor necrosis factor (TNF)-α, IL-1β, IL-8, and C-reactive protein (CRP)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call