Abstract

Previous studies have shown large decreases in cochlear implant psychophysical detection thresholds during the weeks following the onset of electrical testing. The current study sought to determine the variables underlying these threshold decreases by examining the effects of four deafening and implantation procedures on detection thresholds and implant impedances. Thirty-two guinea pigs were divided into four matched groups. Group I was deafened and implanted Day 0 and began electrical testing Day 1. Group II was deafened and implanted Day 0 and began electrical testing Day 45. Group III was deafened Day 0, implanted Day 45 and began electrical testing Day 46. Group IV was not predeafened but was implanted Day 0 and began electrical testing Day 1. All groups showed threshold decreases over time but the magnitude of change, time course and final stable threshold levels depended on the type and time course of treatment. Impedances increased over the first two weeks following the onset of electrical testing except in Group II. Results suggest that multiple mechanisms underlie the observed threshold shifts including (1) recovery of the cochlea from a temporary pathology caused by the deafening and/or implantation procedures, (2) effects of electrical stimulation on the auditory pathway, and (3) tissue growth in the implanted cochlea. They also suggest that surviving hair cells influence electrical threshold levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call