Abstract

Prediction of protein-ligand binding affinities is crucial for computational drug discovery. A number of deep learning approaches have been developed in recent years to improve the accuracy of such affinity prediction. While the predicting power of these systems have advanced to some degrees depending on the dataset used for model training and testing, the effects of the quality and quantity of the underlying data have not been thoroughly examined. In this study, we employed erroneous datasets and data subsets of different sizes, created from one of the largest databases of experimental binding affinities, to train and evaluate a deep learning system based on convolutional neural networks. Our results show that data quality and quantity do have significant impacts on the prediction performance of trained models. Depending on the variations in data quality and quantity, the performance discrepancies could be comparable to or even larger than those observed among different deep learning approaches. In particular, the presence of proteins in the training data leads to a dramatic increase in prediction accuracy. This implies that continued accumulation of high-quality affinity data, especially for new protein targets, is indispensable for improving deep learning models to better predict protein-ligand binding affinities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.