Abstract

We report a theoretical study on the role of shallow d states in the screened-exchange local density approximation (sX-LDA) band structure of binary semiconductor systems. We found that inaccurate pseudo-wave functions can lead to (1) an overestimation of the screened-exchange interaction between the localized d states and the delocalized higher energy s and p states, and (2) an underestimation of the screened-exchange interaction between the d states. The resulting sX-LDA band structures have substantially smaller band gaps compared with experiments. We correct the pseudo-wave functions of d states by including the semicore s and p states of the same shell in the valence states. The correction of pseudo-wave functions yields band gaps and d-state binding energies in good agreement with experiments and the full potential linearized augmented plane wave sX-LDA calculations. Compared with the quasiparticle GW method, our sX-LDA results shows not only similar quality on the band gaps but also much better d-state binding energies. Combined with its capability of ground-state structure calculation, the sX-LDA is expected to be a valuable theoretical tool for the II-VI and III-V (especially the III-N) bulk semiconductors and nanostructure studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call