Abstract

In the heart ischaemic conditions induce metabolic changes known to have profound effects on Ca(2+) signalling during excitation-contraction coupling. Ischaemia also affects the redox state of the cell. However, the role of cytosolic redox couples, such as the NADH/NAD(+) redox system, for the regulation of Ca(2+) homeostasis has remained elusive. We studied the effects of NADH and NAD(+) on sarcoplasmic reticulum (SR) Ca(2+) release in permeabilized rat ventricular myocytes as well as on Ca(2+) uptake by SR microsomes and ryanodine receptor (RyR) single channel activity. Exposure of permeabilized myocytes to NADH (2 mm; [Ca(2+)](cyt)= 100nm) decreased the frequency and the amplitude of spontaneous Ca(2+) sparks by 62% and 24%, respectively. This inhibitory effect was reversed by NAD(+) (2 mm) and did not depend on mitochondrial function. The inhibition of Ca(2+) sparks by NADH was associated with a 52% decrease in SR Ca(2+) load. Some of the effects observed with NADH may involve the generation of superoxide anion (O(2)(-).) as they were attenuated to just a transient decrease of Ca(2+) spark frequency by superoxide dismutase (SOD). O(2)(-). generated in situ from the xanthine/xanthine oxidase reaction caused a slowly developing decrease of Ca(2+) spark frequency and SR Ca(2+) load by 44% and 32%, respectively. Furthermore, in studies with cardiac SR microsomes NADH slowed the rate of ATP-dependent Ca(2+) uptake by 39%. This effect also appeared to depend on O(2)(-). formation. Single channel recordings from RyRs incorporated into lipid bilayers revealed that NADH (2 mm) inhibited the activity of RyR channels by 84%. However, NADH inhibition of RyR activity was O(2)(-).-independent. In summary, an increase of the cytoplasmic NADH/NAD(+) ratio depresses SR Ca(2+) release in ventricular cardiomyocytes. The effect appears to be mediated by direct NADH inhibition of RyR channel activity and by indirect NADH inhibition (O(2)(-). mediated) of SR Ca(2+)-ATPase activity with a subsequent decrease in SR Ca(2+) content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.