Abstract

We have determined if cyclophosphamide (CYP)-induced cystitis produces additional changes in growth factor/receptors expression in the urinary bladder (urothelium, detrusor) and lumbosacral (L6-S1) dorsal root ganglia (DRG) in a transgenic mouse model with chronic urothelial overexpression of NGF (NGF-OE). Functionally, NGF-OE mice treated with CYP exhibit significant increases in voiding frequency above that observed in control NGF-OE mice (no CYP). Quantitative PCR was used to determine NGF, BDNF, VEGF, and receptors (TrkA, TrkB, p75(NTR)) transcripts expression in tissues from NGF-OE and wild-type (WT) mice with CYP-induced cystitis of varying duration (4h, 48h, 8days). In urothelium of control NGF-OE mice, NGF mRNA was significantly (p ≤ 0.001) increased. Urothelial expression of NGF mRNA in NGF-OE mice treated with CYP (4h, 48h, 8days) was not further increased but maintained with all durations of CYP treatment evaluated. In contrast, CYP-induced cystitis (4h, 48h, 8days) in NGF-OE mice demonstrated significant (p ≤ 0.05) regulation in BDNF, VEGF, TrkA, TrkB, and P75(NTR) mRNA in urothelium and detrusor smooth muscle. Similarly, CYP-induced cystitis (4h, 48h, 8days) in NGF-OE mice resulted in significant (p ≤ 0.05), differential changes in transcript expression for NGF, BDNF, and receptors (TrkA, TrkB, p75(NTR)) in S1 DRG that was dependent on the duration-of CYP-induced cystitis. In general, NGF, BDNF, TrkA, and TrkB protein content in the urinary bladder increased in WT and NGF-OE mice with CYP-induced cystitis (4h). Changes in NGF, TrkA and TrkB expression in the urinary bladder were significantly (p ≤ 0.05) greater in NGF-OE mice with CYP-induced cystitis (4h) compared to WT mice with cystitis (4h). However, the magnitude of change between WT and NGF-OE mice was only significantly (p ≤ 0.05) different for TrkB expression in urinary bladder of NGF-OE mice treated with CYP. These studies are consistent with target-derived NGF and other inflammatory mediators affecting neurochemical plasticity with potential contributions to reflex function of micturition pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call