Abstract

Clobazam (CLB) is a 1,5-benzodiazepine with antiepileptic properties. More than 70% of administered CLB is dealkylated to yield N-desmethylclobazam (N-CLB), a pharmacologically active metabolite, by cytochrome P450 (CYP) 3A4 and CYP2C19. The subsequent inactivation of N-CLB is primarily catalyzed by CYP2C19. Meanwhile, P450 oxidoreductase (POR) is the obligatory electron donor to all microsomal CYP enzymes. The aim of this study was to evaluate the impact of the CYP2C19 and POR genotypes on the pharmacokinetic parameters of CLB and N-CLB. This retrospective study included 85 Japanese patients with epilepsy who were treated with CLB. CYP2C19*2, *3, and P450 oxidoreductase (POR) *28 (rs1057868C>T) polymorphisms were evaluated. A total of 128 steady-state concentrations for both CLB and N-CLB were collected from the patients. A nonlinear mixed-effects model identified the pharmacokinetics of CLB and N-CLB; the covariates included CYP2C19 and POR genotypes, weight, gender, daily CLB dose, and coadministered antiepileptic drugs. Among the 85 patients, the allele frequencies of CYP2C19*2, CYP2C19*3, and POR*28 were 27.6%, 12.9%, and 41.2%, respectively. A one-compartment model with first-order absorption and/or elimination showed that the clearance of CLB and N-CLB was significantly lower by 18.1% and 84.9%, respectively, in the CYP2C19 poor metabolizers compared with the homozygous extensive metabolizers. The CLB clearance was 44% higher in subjects homozygous for the POR*28 T allele than in those homozygous for the POR*28 C allele, although the genotypes did not affect the N-CLB clearance. The concomitant use of phenobarbital, phenytoin, and zonisamide significantly affected the CLB clearance, whereas that of carbamazepine, phenytoin, and valproic acid affected the N-CLB clearance. The weight also significantly influenced the CLB clearance and volume of distribution of both CLB and N-CLB. Our results showed that the CYP2C19 and/or POR genotypes have an impact on the CLB and/or N-CLB clearance. These results suggest that determining the CYP2C19 and/or POR genotypes is helpful for obtaining appropriate serum CLB and N-CLB concentrations and preventing an overdose when starting CLB therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.