Abstract

Cyclooxygenases (COXs) play important roles in inflammation and carcinogenesis. The present study aimed to determine the effects of COX-1 and COX-2 gene disruption on Helicobacter pylori-induced gastric inflammation. Wild-type (WT), COX-1 and COX-2 heterozygous (COX-1+/- and COX-2+/-), and homozygous COX-deficient (COX-1-/- and COX-2-/-) mice were inoculated with H. pylori strain TN2 and killed after 24 weeks of infection. Uninfected WT and COX-deficient mice were used as controls. Levels of gastric mucosal inflammation, epithelial cell proliferation and apoptosis, and cytokine expression were determined. COX deficiency facilitated H. pylori-induced gastritis. In the presence of H. pylori infection, apoptosis was increased in both WT and COX-deficient mice, whereas cell proliferation was increased in WT and COX-1-deficient, but not in COX-2-deficient, mice. Tumor necrosis factor (TNF)-alpha and interleukin-10 mRNA expression was elevated in H. pylori-infected mice, but only TNF-alpha mRNA expression was further increased by COX deficiency. Prostaglandin E2 levels were increased in infected WT and COX-2-deficient mice but were at very low levels in infected COX-1-deficient mice. Leukotriene (LT) B4 and LTC4 levels were increased to a similar extent in infected WT and COX-deficient mice. COX deficiency enhances H. pylori-induced gastritis, probably via TNF-alpha expression. COX-2, but not COX-1, deficiency suppresses H. pylori-induced cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.