Abstract

Organic hole-transporting materials (HTMs) are essential components of high-performance perovskite solar cells (PSCs). Three zinc-coordinated chlorophyll derivatives with bacteriochlorin, chlorin, and porphyrin macrocycles, namely, ZnBChl, ZnChl, and ZnPor, respectively, were newly synthesized and employed as HTMs in PSCs. The difference in the π backbones of these HTMs causes differences in their photophysical properties, and thus different hole-extraction abilities, as revealed by steady-state photoluminescence spectra. The power conversion efficiencies (PCEs) of PSCs with a typical mesoporous structure, fluorine-doped tin oxide/compact TiO2/mesoporous TiO2/CH3NH3PbI3/HTM/Ag, are 8.26%, 11.88%, and 0.68% for ZnBChl, ZnChl, and ZnPor, respectively. The small PCE of the ZnPor-based PSC is partially attributed to the small energy gap of the highest occupied molecular orbital (HOMO) levels between ZnPor and CH3NH3PbI3 perovskite. Therefore, we increased this energy gap slightly by shifting the HOMO level of...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call