Abstract

Objective Vascular endothelial cells (ECs) are constantly exposed to blood flow associated forces such as cyclic strain due to blood pressure, which affects ECs survival and angiogenesis by producing ROS via NAD(P)H oxidase. NAD(P)H oxidase subunit p22phox is reported to be related to the development of atherosclerosis and increased levels of p22phox mRNA are correlated to ECs proliferation. However, the importance and signaling mechanism of p22phox on ECs survival and angiogenesis under cyclic strain are unclear. Methods 5%–20% cyclic strain were applied by the Flexercell system to simulate in vivo environment of human ECs; the effect of p22phox on mechanical ECs survival mechanism and tubulogenesis was determined by western blot and 3-D tissue culture by knocking down p22phox expression via shRNA plasmid. Results Knockdown of p22phox induced expression of cleaved caspase-3 and decreased cell viability ratio (CVR). 5% strain increased and 20% strain decreased CVR of shp22phox cells. There were complex biphasic effects of cyclic strain on ECs survival signaling. 5% strain continuously increased Akt phosphorylation; 20% strain increased after 10min stimulation and decreased Akt phosphorylation lately. 5% strain increased and 20% strain decreased eNOS phosphorylation. Knockdown of p22phox decreased Akt and eNOS phosphorylation with or without cyclic strain. ROS production was increasingly stimulated progressively by strain via the p22phox pathway. 5% strain increased and 20% strain decreased total NO production and vascular tubulogenesis via p22phox pathway. Conclusion ROS production is pivotal to responses to physiological or pathological strain. Physiological strain increases but pathological strain decreases ECs survival and tubulogenesis, and these effects occur via the NAD(P)H subunit p22phox pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.