Abstract

Although there is a high prevalence of noncarious cervical lesions (NCCLs), the etiology of these lesions remains contentious. To evaluate the combined effects of cyclic fatigue stress and biocorrosion activity on NCCLs. Extracted premolar teeth were allocated into four groups (N = 10). Two groups were cyclically fatigue loaded (100 N; 72 cycles per minute; 9,200 cycles) and placed in either hydrochloric acid gel (pH = 0.1) or orange juice (pH = 4). The other two groups were stored in identical chemical solutions without fatigue load. The buccal-lingual width of each tooth was measured before and after testing. The depth of biocorrosion, normalized by the percentage change in buccolingual width, normalized by time (hour) was calculated. The data were analyzed using a two-way analysis of variance and Tukey's HSD multiple comparison test (α = 0.05). Mean (SD) of the depth of biocorrosion values were as follows: teeth receiving fatigue loading with hydrochloric acid gel exposure (1.003%/hour [0.063]) revealed a significantly higher depth of biocorrosion than the fatigue-loaded group with orange juice exposure (0.511%/hour [0.281]) (p < 0.01). For the groups without fatigue loading, those with hydrochloric acid gel (0.022%/hour [0.006]) had a significantly higher depth of biocorrosion than the group with orange juice (0.009%/hour [0.004]) (p < 0.01). The cyclically fatigue-loaded teeth with hydrochloric acid gel had a significantly greater depth of biocorrosion than either group without fatigue loading (p < 0.001). Cyclic fatigue stress-acidic biocorrosion had a significant effect on the depth of the NCCLs. In order to manage the destructive NCCLs lesions properly, it is essential to understand the etiology of these lesions. The present study indicated that the combined mechanisms of cyclic fatigue stress and biocorrosion could contribute to the formation of NCCLs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.