Abstract

High-strength wear-resisting aluminum bronze alloy is a difficult-to-machine material. Dry cutting tests were conducted on high-strength wear-resisting aluminum bronze alloy with YW1 cemented carbide tool and YBC251 coated cemented carbide tool. The wear mechanisms of the two tools were characterized with a scanning electron microscope (SEM) and an energy-dispersive spectrometer (EDS) to compare their machining performances. And on that basis, the influences of cutting parameters, including cutting speed, feed rate, and cutting depth, on the tool life of the YBC251 coated cemented carbide tool and surface roughness of the workpiece were analyzed with a 3-D super-depth-of-field instrument and a surface profile measuring instrument, respectively. The results showed that the machining performance of the YBC251 coated cemented carbide tool was better than that of the YW1 cemented carbide tool. Among all the cutting parameters, it was found that feed rate had a stronger effect on tool life and surface roughness than cutting speed and cutting depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call