Abstract

This paper investigates how cutting conditions affect dynamic cutting factor and system process damping in a dynamic milling process. By considering variation of edge plowing force, a frequency domain method is presented to identify the dynamic cutting factor through measured vibration in a milling process, and cutting conditions most suitable for the identification experiments are also discussed. A series of experiments are carried out to investigate the effects of cutting conditions on the dynamic cutting factor. This factor is shown to be significantly affected by the cutting speed, but relatively independent of the feed per tooth and the radial depth of cut. An average process damping model is further constructed and shown to be effective in representing the time-varying damping function. The average process damping is shown to increase rapidly at lower cutting speed, but remain constant as the cutting speed beyond a critical value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.