Abstract
This article discusses the processing and properties of titanium nickelides locally sintered via Current-Activated Tip-based Sintering (CATS), a new localized sintering process. One of the advantages of CATS is the ability to apply orders of magnitude higher current densities than conventionally possible, which can promote rapid sintering and phase transformation rates. Mechanically alloyed equi-atomic Ni–Ti powder was for the first time tip sintered at varying current intensities and cumulative current exposure time. The effect of current-control processing conditions on the evolution of the locally sintered Ni–Ti microstructure and properties are discussed. The size of the locally sintered process zone was found to increase with cumulative current exposure time. The degree of sintering, phase transformations, and properties were found to depend on the current intensity, cumulative current exposure time and distance away from the tip/compact interface. Fully/near fully dense material was achieved rapidly at locations exposed to the highest current densities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.