Abstract
The large volume change during lithiation/delithiation leads the silicon electrodes in lithium-ion batteries to severely degrade the mechanical performance and the silicon electrodes in lithium-ion batteries to further deteriorate electrochemical properties, which limits the commercial applications of silicon electrodes. After several year’s studies, the whole process of fracture for crystalline silicon anodes has been almost understood. However, the relationship between fracture behaviors and the lithiation depth has not been sufficiently studied. In this work, the <i>in-situ</i> observations of morphological changes (e.g., volume expansion, crack initiation, propagation, and debonding of lithiated silicon) during lithiation at the different current densities are reported for silicon micropillars fabricated by standard photolithography and a deep reactive ion etching process. Also, this work focuses on the relative depth of lithiation of silicon electrodes at the moment of crack initiation, which is one of the crucial parameters representing the utilization of active materials with no crack. The results show that the silicon micropillars are broken faster (i.e., crack initiation and pulverization in a shorter lithiation time) and more seriously at a large current density, exhibiting more prominent symmetry of morphology. However, the relative depths of lithiation at the different current densities have just a slight difference (i.e., 18%–22%), when cracks are initiated. Here in this work, a silicon micropillar fracture is confirmed by the optical observation, while the relative depth of lithiation is calculated according to the capacity data recorded by the charge/discharge battery test system. The small fluctuation of the relative depth of lithiation with the large wave of current density can be ascribed to the dominant role of local stress concentration caused by anisotropic volume change in fracture behavior, which is validated by the results obtained by the finite element model (i.e., the depth of lithiation predicted by numerical simulations is ~ 22.6%). Therefore, the relationship between fracture behavior and the lithiation kinetics is established, providing an effective strategy for estimating the utilization of active materials under crack-free operation. With the help of the theoretical mechanics model considering both volume change and concurrent movement of reaction front, the stress state in the lithiated silicon at the moment of crack initiation is given, showing the tensile hoop stress near the reaction front. Consequently, these results suggest that the fracture behaviors depend on the current density, but the position of crack initiation (i.e., the depth of lithiation with no crack) is unrelated to current density (at least in a relatively broad range) for large micron-sized crystalline silicon electrodes, thereby shedding light on the fracture mechanisms and the design of alloy anodes (e.g., size and structure) in lithium-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.