Abstract
ABSTRACT The effects of long-term curing on the strength and deformation characteristics of compacted cement-mixed soil were evaluated. A series of unconfined compression tests and drained triaxial compression (TC) tests were performed on moist cement-mixed sand compacted at various water contents, wi, and cured at unconfined conditions for different periods up to more than eight years. TC tests were performed on cement-mixed gravel compacted at the optimum water content. The ageing effects on the compressive strength, qmax, from the present study were compared to those with various types of cement-mixed soils and concretes from the literature. An increase in qmax of cement-mixed soil continues for a very long period, up to several years, unlike ordinary concrete. This result indicates that the compressive strength at 28 days of cement-mixed soil, usually employed as the design strength, may largely underestimate the long-term strength. The increasing rate with time of the initial stiffness at small strains becomes continuously smaller than qmax with time. A large high-stiffness stress zone develops when monotonic loading is restarted at a certain high strain rate after some long sustained loading. This stress size is much larger than the one in the case without ageing effects. By positive interactions between the ageing effect and the inviscid yielding, qmax exhibits a larger extra gain when cured longer at more anisotropic stress states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.