Abstract
The present work carried out the influence of curing cycles on the performance of laterite-based geopolymer composites. To do so, the end products were obtained by altering laterite with 15, 20, and 25 wt% of rice husk ash (RHA). Alkaline solution in a constant solid/liquid ratio of 0.35 was added together with fine and coarse aggregates (representing equal and double weight of laterite, respectively). The different obtained matrices were treated in the following three curing cycles before characterization: room temperature curing (RTC), oven curing at 80 °C (OTC) and controlled humidity steam curing at 80 °C (STC). The mechanical tests carried out at 28 days give the following maximum values for each curing mode: 16.40, 28.82 and 56.41 MPa for RTC, OTC, and STC modes respectively. This means that when the samples, submitted in a moisture-controlled environment, the end products are more stable, less porous and resistant. Regarding the physical properties, the results show that the maximum value of open porosity is 11.62% corresponding to a matrix that was cured at room temperature without rice husk ash added, while the minimum value of 7% corresponds to a matrix that was cured under controlled humidity and containing 20% rice husk ash. The optimum and minimum absorption values are 2.70 and 4.60% respectively for the OTC and RTC curing modes. As for bulk densities, the optimum value is 2.64 g cm−3 for the matrix having 15% rice husk ash and the minimum value is 2.33 g cm−3 for a matrix having 20% rice husk ash, for OTC and STC curing modes respectively. The appropriate curing type for laterite-based geopolymer is when the humidity is controlled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.