Abstract

To investigate the effects of curcumin on pain threshold and the expressions of nuclear factor κ B (NF-κ B) and CX3C chemokine receptor 1 (CX3CR1) in spinal cord and dorsal root ganglion (DRG) of the rats with sciatic nerve chronic constrictive injury. One hundred and twenty male Sprague Dawley rats, weighing 220-250 g, were randomly divided into 4 groups. Sham surgery (sham) group: the sciatic nerves of rats were only made apart but not ligated; chronic constrictive injury (CCI) group: the sciatic nerves of rats were only ligated without any drug treatment; curcumin treated injury (Cur) model group: the rats were administrated with curcumin 100 mg/(kg·d) by intraperitoneal injection for 14 days after CCI; solvent control (SC) group: the rats were administrated with the solvent at the same dose for 14 days after CCI. Thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) of rats were respectively measured on pre-operative day 2 and postoperative day 1, 3, 5, 7, 10 and 14. The lumbar segment L4-5 of the spinal cord and the L4, L5 DRG was removed at post-operative day 3, 7 and 14. The change of nuclear factor κ B (NF-κ B) p65 expression was detected by Western blotting while the expression of CX3CR1 was determined by immunohistochemical staining. Compared with the sham group, the TWL and MWT of rats in the CCI group were significantly decreased on each post-operative day (P<0.01), which reached a nadir on the 3rd day after CCI, and the expressions of NF-κ B p65 and CX3CR1 were markedly increased in spinal cord dorsal horn and DRG. In the Cur group, the TWL of rats were significantly increased than those in the CCI group on post-operative day 7, 10 and 14 (P<0.05) and MWT increased than those in the CCI group on post-operative day 10 and 14 (P<0.05). In addition, the administration of curcumin significantly decreased the positive expressions of NF-κ B p65 and CX3CR1 in spinal cord and DRG (P<0.05). Our study suggests that curcumin could ameliorate the CCI-induced neuropathic pain, probably through inhibiting CX3CR1 expression by the activation of NF-κ B p65 in spinal cord and DRG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call