Abstract

Depression is a neuropsychiatric disease associated with wide ranging disruptions in neuronal plasticity throughout the brain. Curcumin, a natural polyphenolic compound of curcuma loga, has been demonstrated to be effective in the treatment of depressive-like disorders. The present study aimed to investigate the mechanisms underlying the antidepressant-like effects of curcumin in a rat model of chronic, unpredictable, mild, stress (CUMS) -induced depression. The results showed that CUMS produced depressive-like behaviours in rats, which were associated with ultra-structural changes in neurons within the lateral amygdala (LA). In addition, the expression of synapse-associated proteins such as brain-derived neurotrophic factor (BDNF), PSD-95 and synaptophysin were significantly decreased in the LA of CUMS-treated rats. Chronic administration of curcumin (40 mg/kg, i.p. 6 wk) before stress exposure significantly prevented these neuronal and biochemical alterations induced by CUMS, and suppressed depressive-like behaviours, suggesting that this neuronal dysregulation may be related to the depressive-like behaviours caused by CUMS. Together with our previous results, the current findings demonstrate that curcumin exhibits neuroprotection and antidepressant-like effects in the CUMS-induced depression model. Furthermore, this antidepressant-like action of curcumin appears to be mediated by modulating synapse-associated proteins within the LA. These findings provide new insights into the underlying mechanisms leading to neural dysfunction in depression and reveal the therapeutic potential for curcumin use in clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.