Abstract

Solar water heating is an effective method for heat demands in domestic applications. Solar collector is a main component of any solar water heating system. In this work, the effect of CuO–water nanofluid, as the working fluid, on the performance and the efficiency of a flat-plate solar collector is investigated experimentally. The volume fraction of nanoparticles is set to 0.4% and the mean particle dimension is kept constant at 40nm. The working fluid mass flow rate is varied from 1 to 3kg/min. The experiments are conducted in Mashhad, Iran with the latitude of 36.19°. The experimental results reveal that utilizing the nanofluid increases the collector efficiency in comparison to water as an absorbing medium. The nanofluid with mass flow rate of 1kg/min increases the collector efficiency about 21.8%. For any particular working fluid, there is an optimum mass flow rate which maximizes the collector efficiency. Adding nanoparticles to a base fluid produces a nanofluid which has enhanced thermal characteristics compared with its base fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.