Abstract

The effects of CuO additives and sol–gel method synthesis on the sintering behavior, microstructure and the microwave dielectric properties of NiNb2O6 ceramics were investigated systematically. The NiNb2O6 ceramics were synthesized with traditional solid state method and sol–gel method, and the CuO additives were used in the solid state method for comparison. The sintering temperature of NiNb2O6 ceramics with the highest densification can be effectively reduced from about 1275 °C to 1050 and 1100 °C respectively by using CuO additions and sol–gel technique. To study their applicability in low temperature co-fired ceramic technology, dielectric properties have been characterized. The dielectric properties exhibited a significant dependence on the sintering condition, composition and crystal structure of the ceramics. In particular, the 2.5 wt% CuO-doped NiNb2O6 ceramics sintered at 1050 °C have excellent microwave dielectric properties: er = 21.45, Q × f = 23,531 GHz, τf = −27.9 ppm/°C. While the NiNb2O6 ceramics prepared by sol–gel method obtain microwave dielectric properties as: er = 19.16, Q × f = 11,149 GHz, τf = −27.3 ppm/°C after sintered at 1100 °C for 2 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.