Abstract

Growth conditions relevant for the large-scale production of heterologous proteins with yeasts were studied on a laboratory scale. A strain of Kluyveromyces lactis, containing 15 copies of an expression cassette encoding guar α-galactosidase integrated into its ribosomal DNA, was used as a model. By using urea as a nitrogen source, it was possible to produce active extracellular α-galactosidase in shake-flask cultures grown on a defined mineral medium. Inclusion of urea instead of ammonium sulphate prevented unwanted acidification of cultures. With urea-containing mineral medium, enzyme production in shake flasks was comparable to that in complex media containing peptone. In contrast, the presence of peptone was required to achieve high productivity in chemostat cultures. The low productivity in chemostat cultures growing on mineral media was not due to loss oft the expression cassette, since addition of peptone to such cultures resulted in an immediate high rate of α-galactosidase production. The discrepancy between the behaviour of shake-flask and chemostat cultures during growth on mineral medium illustrates the necessity of physiological studies for the scalling-up of heterologous protein production from laboratory to production scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.