Abstract

Plant water requirements were investigated in three northern highbush blueberry (Vaccinium corymbosum L.) cultivars, Duke, Bluecrop, and Elliott, grown either at a high-density spacing of 0.45 m apart within rows or a more traditional spacing of 1.2 m. Spacing between rows was 3.0 m. As is typical for the species, each cultivar was shallow-rooted with most roots located less than 0.4 m deep, and each was sensitive to soil water deficits with plant water potentials declining as low as −1.6 MPa within 5 to 7 days without rain or irrigation. Compared with traditional spacing, planting at high density significantly reduced dry weight and yield of individual plants but significantly increased total dry weight and yield per hectare. High-density planting also significantly increased total canopy cover and water use per hectare. However, although canopy cover (often considered a factor in water use) increased up to 246%, water use never increased more than 10%. Because of more canopy cover at high density, less water penetrated the canopy during rain or irrigation (by overhead sprinklers), reducing both soil water availability and plant water potential in each cultivar and potentially reducing water use. Among cultivars, water use was highest in ‘Duke’, which used 5 to 10 mm·d−1, and lowest in ‘Elliott’, which used 3 to 5 mm·d−1. Peak water use in each cultivar was during fruit development, but water use after harvest declined sharply. Longer irrigation sets (i.e., longer run times) or alternative irrigation methods (e.g., drip) may be required when growing blueberry at high density, especially in cultivars with dense canopies such as ‘Elliott’.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call