Abstract
Prion diseases are neurodegenerative disorders caused by misfolding of the prion protein (PrP) from a normal cellular protein (PrPC) to a protease-resistant isoform (PrPSc). However, the aggregation mechanism is not entirely understood because of the physical properties of PrP, such as its solubility or aggregation in vitro and conformational or mutation diversity. Recently, we reported the physical and physiological properties of a synthetic fragment peptide. In the present study, we assessed the importance of a point mutation at the C-terminal region of PrP in structural conversion and aggregation and evaluated the physical and physiological properties of the point-mutated human-PrP180-192 V180I (hPrP180-192 V180I) using circular dichroism spectra, high-performance liquid chromatography, Affinix QNμ, and thioflavin-T staining, including the effects of Cu2+. The secondary structure of hPrP180-192 V180I changed from a random coil to a β-sheet in Cu2+ free buffer. In addition, we observed molecular interactions in hPrP180-192 V180I and aggregation with itself, which were inhibited by Cu2+. We conclude that the point mutation in the C-terminal region of PrP, including hPrP180-192 V180I, and Cu2+ may play an important role in the conversion of PrPC to PrPSc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.