Abstract

Effects of minor Cu, Zn additions on the wettability, microstructures, and shear properties of Sn-Bi-based lead-free solder joints were investigated. The results show that a Cu addition promotes the wetting ratio of solder alloy, while Zn creates the opposite effect. The Cu5Zn8 intermetallic compound layer at the interface of Sn-40Bi-2Zn-0.1Cu and the Cu substrate alters the surface tension, which increases the contact angle. Also, this type of intermetallic compound contributes to the change of three wetting indicators. A proper amount of Cu, Zn increased the wetting force and decreased the wetting time, while the variation in the trend of withdrawing force is consistent with that of contact angle. From joint shear test results, the shear force decreased in the following order: Sn-40Bi-0.1Cu, Sn-58Bi, and Sn-40Bi-2Zn-0.1Cu solder joints. Cu additions refined the grain size of the Bi-rich phase and decreased the interface brittleness, which is the reason for the improvement of the shear strength of Sn-40Bi-0.1Cu solder joints. In contrast, Zn weakened the shear strength due to the brittle nature of the Zn-rich phase and the chemical activity of Zn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.