Abstract

The effects of Cu, Sn and W on the rate of nitrogen dissociation on the surface of molten iron have been investigated at 1 973 K by an isotope exchange method. The rate constant of nitrogen dissociation increases with increasing the content of W. On the other hand, the rate constant decreases with increasing the Cu and Sn contents. These effects of the alloying elements on the rate of nitrogen dissociation depend on the affinity of the solute element with nitrogen in molten iron. The elements which have stronger affinity with nitrogen than iron have a stronger effect of enhancing the nitrogen dissociation rate, and those which have stronger repulsive force against nitrogen have a stronger effect of retarding the nitrogen dissociation. The effect of the alloying elements on the rate of nitrogen dissociation is investigated based on a model proposed from the analysis on the basis of surface concentration of the solute. This model can reasonably represent the variation of the rate constant of nitrogen dissociation with the W content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.