Abstract

In recent years, automobiles with lower fuel consumption are required because the exhaust fume is severely regulated. The weight-saving is quite effective to realize such low fuel consumption, and therefore aluminum alloy becomes attractive as an alternative material of steels due to its high specific strength. 6XXX series Al-Mg-Si alloys exhibit good bake-hardenability during paint-bake treatment in the automobile manufacturing process, but to reduce further environmental impact, the paint-baking temperature is supposed to be lowered than the present temperature of about 443K. In this study, it was aimed to investigate the attained hardness after paint-bake treatment at various temperatures of 408-443K for an Al-0.55wt%Mg-0.90wt%Si alloy with/without microalloying elements of Cu and Li. The effects of multi-step aging conditions; e.g. pre-aging, natural aging and paint-bake treatments, were also investigated through Vickers hardness test, TEM observation and DSC analysis. From the obtained experimental results, it was clarified that the addition of Cu or Li to the Al-Mg-Si alloy increases the attained hardness even at a paint-baking temperature of 408K due to the increased volume fraction of precipitates. Furthermore, pre-aging treatment at 373K for 18ks was also effective in suppressing the increase in hardness during natural aging, resulting in the highest attained hardness among the investigated multi-step aging conditions; i.e. HV100 in the Li-added alloy paint-baked at 408K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.