Abstract
Doped and undoped ZnS colloidal nanocrystals have drawn much attention due to their versatile applications in the fields of optoelectronics and biotechnology. In this paper, Cu doped ZnS quantum dots were synthesized via the simple thermolysis of ethylxanthate salts. The lattice and optical properties of the nanocrystals were then studied in detail. The quantum dot lattice contracted linearly between Cu concentrations of 0.2-2%, while it continued to contract more gradually as Cu concentrations were further increased from 4 to 6%, due in part to the Cu ions located on the surface of the ZnS lattice. Cu incorporation induces a long tail in absorption at long wavelengths. The PL spectrum shows a red shift at first, and then a blue shift with increases in Cu concentration. Cu doped at low concentrations (0.2-1%) enhanced the emission, while high Cu concentrations (2-6%) quenched emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.