Abstract
Thin film transistors (TFTs) with amorphous silicon films crystallized via continuous-wave green laser at a wavelength of 532 nm exhibit very different electrical characteristics in various crystallization regions, corresponding to the Gaussian energy density distribution of the laser beam. In the center region subjected to the highest energy density, the full melting scheme led to the best crystallinity of the polycrystalline silicon film, resulting in the highest field-effect mobility of 500 cm2 V−1 s−1. In contrast, the edge region that resulted in solid phase crystallization exhibited the worst mobility of 48 cm2 V−1 s−1 for the polycrystalline silicon TFTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.